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Abstract

Modern aircraft increasingly rely on electric power for subsys-
tems that have traditionally run on mechanical power. The
complexity and safety-criticality of aircraft electric power sys-
tems have therefore increased, rendering the design of these
systems more challenging. This work is motivated by the
potential that correct-by-construction reactive controller syn-
thesis tools may have in increasing the effectiveness of the elec-
tric power system design cycle. In particular, we have built
an experimental hardware platform that captures some key
elements of aircraft electric power systems within a simplified
setting. We intend to use this platform for validating the ap-
plicability of theoretical advances in correct-by-construction
control synthesis and for studying implementation-related
challenges. We demonstrate a simple design workflow from
formal specifications to auto-generated code that can run
on software models and be used in hardware implementa-
tion. We show some preliminary results with different control
architectures on the developed hardware testbed.
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1 Introduction and Motivation

Aircraft electric power systems have become increasingly important over
the years because they support various subsystems and essential services on
aircraft. These electrical services and subsystems are commonly referred to
as system loads. System loads are of two categories, namely, primary loads
(some of these are safety- or mission-critical) and secondary (noncritical)
loads. The system needs to ensure that the primary loads are supplied with
power at all times; that is, if a fault affects a part of the system that powers a
primary load, the system must be able to reconfigure and provide power to the
load through another path. In order to reconfigure a system, it is necessary
to reroute power, which is accomplished with high power electromagnetic
devices called contactors. The contactors are arranged such that they are
magnetically held in a preferred state by an applied signal. The state is either
open or closed. To reconfigure the contactors to react to faults and modes
of operation, the system uses control logic that can sense system conditions
and environmental conditions under which the system operates. The electric
power system, therefore, includes voltage and current sensors connected to
the control logic. In current practice, the control logic is often designed by
hand, resulting in lengthy design and verification cycles. As an alternative
approach, [1] and [2] explored the application of correct-by-construction
reactive controller synthesis techniques.

In this report, we describe our recently developed simulation models and
a hardware testbed for validating reactive controllers synthesized using TuLiP

[1], a temporal logic planning toolbox, in order to investigate the validity
of the assumptions made in controller synthesis. TuLiP is a collection of
Python-based code used for automatic synthesis of correct-by-construction
embedded control software. Automatic synthesis of reactive centralized and
distributed controllers of aircraft electric power systems is described in detail
in [2]. The particular distributed synthesis method adopted in this study is
introduced in [3] and [4].

University-scale testbeds for research on correct-by-construction controller
synthesis are fairly limited. An advanced diagnostics and prognostics testbed
is described in [5]. Some applications of this testbed to the electric power
systems of spacecraft and aircraft are detailed in [6]. However, the experi-
ments focused on diagnostic queries of the system, while our work is focused
on the implementation of correct-by-construction control protocols for fault-
tolerant operations. A robotics testbed implementing correct-by-construction
controllers is described in [7].

TuLiP can be used to synthesize logic so that the satisfaction of certain
safety requirements is guaranteed. The synthesized logic enables the contac-
tors to react to changes in system conditions such as the status of generators
and rectifier units. This is commonly referred to as a reactive system. The
safety requirements used in our simulation models and hardware testbed
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Figure 1: Single-line diagram of the power system testbed. Contactors are represented
by double bars. The AC and DC sides of the system are separated by rectifier
units (RU).

stipulate that the alternating current generators should never be paralleled
and that the duration for which the bus is not powered should never exceed
a certain limit. They also include the environment-related assumption that
at least a subset of the generators and rectifier units must be working at all
times. The simulation models were built with the physical modeling software
SimPowerSystems, an extension of Simulink [8]. In order to validate
the controller on the experimental hardware platform, we synthesized and
tested it using TuLiP and SimPowerSystems, respectively. Thereafter, we
investigated the validity of the assumptions used for controller synthesis on
the experimental hardware platform.

An aircraft electric power system uses different voltage levels, which can
broadly be divided into four categories, namely, high-voltage AC, high-voltage
DC, low-voltage AC, and low-voltage DC. The topology in Figure 1 is of
specific interest because it is representative of some of the key features of
aircraft electric power systems in simplified settings. Therefore, the hardware
testbed was built based on the above mentioned topology.
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2 Theoretical Background

We now discuss the formal specification language utilized for the synthesis of
control protocols and how these protocols are implemented in the software
models and on the hardware testbed.

2.1 Linear Temporal Logic

In reactive systems, correctness depends, not only on inputs and outputs of
a computation, but on execution of the system. Temporal logic is a branch
of logic that incorporates temporal aspects to reason about propositions in
time. In this report, we consider a version of temporal logic called linear
temporal logic (LTL) [9].

LTL includes Boolean connectors like negation (¬), disjunction (∨),
conjunction (∧), material implication (→), and two basic temporal modalities
next (#) and until ( U ). By combining these operators, it is possible to
specify a wide range of requirements. Formulas involving other operators can
be derived from these basic ones, including eventually (3) and always (�).

An atomic proposition is a statement on system variables v that has a
unique truth value (True or False) for a given value v. For a set π of atomic
propositions, any atomic proposition p ∈ π is an LTL formula. Given a
propositional formula describing properties of interest, widely used temporal
specifications can be defined in terms of their corresponding LTL formulas as
follows. A safety formula asserts that a property will remain true throughout
the entire execution (i.e., nothing bad will happen). A response formula
states that at some point in the execution following a state where a property is
true, there exists a point where a second property is true. A response formula
is used to describe how systems need to react to changes in environment
or operating conditions. A response property, for example, can be used to
describe how the system should react to a generator failure: if a generator
fails, then at some point a corresponding contactor should open [1], [2].

2.2 Reactive Synthesis

A system consists of a set V of variables. The domain of V , denoted by
dom(V ), is the set of valuations of V . Let E and P be sets of environment
and controlled variables, respectively. Let s = (e,p) ∈ dom(E)×dom(P) be
a state of the system. Consider a LTL specification ϕ of assume-guarantee
form

ϕ = ϕe→ ϕs,

where, roughly speaking, ϕe characterizes the assumptions on the environment
and ϕs characterizes the system requirements. LTL formulas are interpreted
over infinite sequences of states, where s0s1s2 . . . is an infinite sequence of
valuations of environment and controlled variables. The synthesis problem
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is then concerned with constructing a strategy, i.e., a partial function f :
(s0s1 . . .st−1,et) 7→ pt , which chooses the move of the controlled variables based
on the state sequence so far and the behavior of the environment so that the
system satisfies ϕs as long as the environment satisfies ϕe.

For general LTL, the synthesis problem has a doubly exponential com-
plexity [10]. A subset of LTL, namely generalized reactivity (2.2) (GR(1)),
can be solved in polynomial time (polynomial in the number of valuations
of the variables in E and P) [11]. GR(1) specifications restrict ϕe and ϕs to
take the following form, for α ∈ {e,s},

ϕα := ϕ
α
init ∧

∧
i∈Iα

1

2ϕ
α
1,i∧

∧
i∈Iα

2

23ϕ
α
2,i,

where ϕα
init is a propositional formula characterizing the initial conditions; ϕα

1,i
are transition relations characterizing safe, allowable moves and propositional
formulas characterizing invariants; and ϕα

2,i are propositional formulas charac-
terizing states that should be attained infinitely often. For the specifications
considered in this report, the safety fragment of GR(1) suffices.

Given a GR(1) specification, the digital design synthesis tool implemented
in JTLV (a framework for developing temporal verification algorithm) [12]
generates a finite-state automaton that represents a switching strategy for
the system. TuLiP provides an interface to JTLV.

2.3 Testbed Specifications

Consider the single-line diagram in Figure 1 in which environment variables
are health statuses of generators and rectifier units, and controlled variables
are the state of contactors. Consider also two different controller implemen-
tations: a centralized logic that runs the system with a single automaton and
a distributed logic that has two different automata, one for the AC subsystem
and one for the DC subsystem, running sequentially.

For the centralized logic, the environment assumptions are: (i) at least
one generator must always be healthy, and (ii) at least one rectifier unit must
always be healthy. In LTL, this can be written as

�(((gen1 = healthy)∨ (gen2 = healthy))∧
((ru1 = healthy)∨ (ru2 = healthy))),

(1)

where gen1, gen2, ru1, and ru2 are health statuses of the two generators
and the two rectifier units, respectively. To ensure non-paralleling of AC
sources, we disallow any configuration of contactors in which a path may be
created between the two generators. The contactors c1 and c2 are below the
generators in Figure 1, and c3 is between the AC buses. Therefore, contactors
c1,c2, and c3 can never be closed at the same time. This is written as

�¬((c1 = closed)∧ (c2 = closed)∧ (c3 = closed)).
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The last specification ensures that all buses can be unpowered for no more
than a time T . The limit that unpowered time can be set to depends on timing
characteristics of the testbed, witch is explained in Section 4.1. To synthesize
centralized logic, we used the assumption that this time is zero; thus, the
specifications that all buses bi fulfill �(bi = powered), for i ∈ {1,2,3,4} can
be set.

To synthesize distributed logic, we separate the system into two subsys-
tems, seen in Figure 1. The AC subsystem contains all AC components
(generators, AC contactors, AC buses, and loads). The DC subsystem con-
tains all rectifier units, DC contactors, buses, and loads. All specifications
from the centralized case decompose and carry over to the distributed case.
However, in order to ensure that the overall specification is realizable, we
impose additional restrictions on the components located at the interface
between subsystems.

The rectifier units contain capacitors that can be chosen so that they
create a delay TRU , in which the DC buses stays powered even after that an
AC bus gets unpowered.

If TRU > T the additional interface refinement comes in the form of a
guarantee specification that all DC buses bi, for i ∈ {1,2} will always be
powered �(bi = powered), provided that both rectifier units stay healthy, i.e.,

�((ru1 = healthy)∧ (ru2 = healthy)).

This guarantee is written as an environment for the DC subsystem. With
this refinement, both subsystems can be synthesized independently, and the
overall system specifications are satisfied when they are implemented together.
We assume that the time a generator remains healthy is not arbitrarily short
so that the AC bus powered time (i.e., the time between two intervals when
AC bus is unpowered) is large enough to keep the capacitors on rectifier units
charged.

2.4 Implementing Formal Specifications

TuLiP generates finite-state automata in the form of a text file that enu-
merates the possible states of the system and how the transitions could
be carried out according to the current state. It also generates a text file
that specifies environment variables (e.g., generators and rectifier units)
and system variables (e.g., contactors). In order to implement the control
logic in SimPowerSystems, we automatically translate these files into a
Matlab-compatible script. A preliminary solution uses a Python script for
this translation. A Python script generating the Matlab code is released
with TuLiP version 0.3c under the tools directory1.

1http://tulip-control.sf.net
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State 0 <gen1:1, gen2:1, c1:1, c2:1, c3:0>
With successors: 1, 2, 3, 0
State 1 <gen1:0, gen2:0, c1:0, c2:0, c3:0>
With no successors
State 2 <gen1:0, gen2:1, c1:1, c2:0, c3:1>
With successors: 1, 2, 3, 0
State 3 <gen1:1, gen2:0, c1:0, c2:1, c3:1>
With successors: 1, 2, 3, 0

Figure 2: Sample of a TuLiP output in two-generator and three-contactor case. The
generator status variables are gen1 and gen2, and the contactor status variables
are c1, c2, and c3. Each state has successors, which define where the controller
can transit depending on current state. In addition, no-successor states exist.

function [c1, c2, c3] = mscript(gen1, gen2)
global state;
switch (state)
case 0:
if gen1 == 1 and gen2 == 1 then

state = 0; c1 = 1; c2 = 1; c3 = 0;
else if gen1 == 0 and gen2 == 0 then

state = 1; c1 = 0; c2 = 0; c3 = 0;
...

end if
case 1:

...
end switch

Figure 3: Sample code generated using TuLiP controller shown in Figure 2.

Figure 2 shows an example four-state TuLiP generated controller for the
two-generator and three-contactor case. A few lines of the auto-generated
code that corresponds to this controller is shown in Figure 3. The auto-
generated code can be inserted in SimPowerSystems as a Matlab function
block. It can also be connected to the board with the code shown in Figure 4.
The complete version of the code in Figure 4 is given in Appendix A. An
example of how a SimPowerSystems model can look like is shown in
Figure 5.
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global state;
while 1 do

gen1 = readgen1();
gen2 = readgen2();
[c1, c2, c3] = mscript(gen1, gen2);
writeboard(c1, c2, c3);

end while

Figure 4: Code that implements the control software running on hardware model.

Figure 5: An example of how a SimPowerSystem model can look like. This model
corresponds to the AC subsystem shown in Figure 1.
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3 Design and Implementation

The single-line diagram in Figure 1 is a simplified notation for representing
a three-phase power system. However, as described in Section 3.1, power
supply to the hardware testbed is not three-phase. In order to represent
the installations of the sensors, circuit protection devices, and fault injec-
tion switches, we present a detailed schematic of the testbed in Figure 6.
Descriptions of the components shown in Figure 6 are given in Figure 7.

The hardware testbed has two different voltage levels: 24 VAC and 2.5
VDC. The DC section is connected to the AC section by rectifier units.
Aircraft contactors are designed to switch three-phase electric power with
relatively high currents. Relays are generally used for switching lower currents.
These operate in a similar fashion to contactors but are lighter, simpler, and
less expensive. Therefore, it was more convenient to handle the switching in
the hardware model with relays. It was possible to connect the control logic to
the relays with the use of a relay board2, which is a set of computer-controlled
relays that can communicate with programming languages supporting serial
communications, e.g., Matlab. Analog-to-digital (A/D) connections on the
relay board are used to monitor the system conditions. A photo of the setup3

is shown in Figure 8. The transformers in Figure 8 are connected to power
cords; these can be unplugged to simulate a generator failure. The rectifier
units are connected to a switch, which can be used to generate a fault on the
DC subsystem. An explicit component list for the hardware testbed is listed
in Appendix B. Next, we describe how we monitor and sense the status of
generators and rectifier units.

3.1 Generation and Circuit Protection

Each generation unit consists of a 12 V battery connected to an inverter
that generates 120 VAC; that is then transformed down to 24 VAC to ensure
safety. If the controller violates one of the safety requirements and connects
these two sources in parallel, it would result in a short-circuit and cause the
fuses installed next to the generators, shown in Figure 6(a), to blow. This
observation makes it possible to monitor the correctness of the controllers at
run time.

3.2 Sensing

The relay board needs to react consistently to faults injected into the system;
this requirement implies that sensor placement, functionality, accuracy, and

2A company called RelayPROS sells such relay boards. For more information, visit
www.relaypros.com.

3A photo of the relay board can be found online at assets.controlanything.com/

photos/usb_relay/ZADSR165DPDTPROXR_USB-900.jpg
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(a) Circuit schematic

(b) Sensing configuration

Figure 6: Circuit schematic of the hardware testbed, which corresponds to the single-line
diagram shown in Figure 1. The numbered arrows in (a) denote voltage sensing
connections to the corresponding numbered arrows in (b).
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Figure 7: Description of the components used in Figure 6.

Figure 8: Hardware setup corresponding to the single-line diagram shown in Figure 1.
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time delay play crucial roles in design. Two types of faults can be injected
in the system, namely, rectifier unit failures and generator failures. Voltage
sensing for generator failures is handled using additional relays. These relays
close a 3.6 V circuit to a battery when triggered by the voltage from the
transformers. If a fault occurs and a generator does not work properly, the
3.6 V circuit opens and the system reacts accordingly. The voltage sensors
of the rectifier units are directly connected to the A/D ports of the relay
board because the voltage can be tuned to the appropriate value using an
adjustable output on the rectifier units. Figure 6(b) illustrates the sensing
configuration.
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4 Experiments

We next describe the characteristics of the hardware testbed and show some
preliminary test runs with different control architectures.

4.1 Testbed Characteristics

The first step before the implementation and testing of different controllers
is characterizing the timing properties of the hardware testbed. Every relay
has a time delay between the time a command is sent by the computer and
the time an action (i.e., relay opening or closing) is taken, this is referred
to as the relay delay time, Td . Furthermore, the system has delays resulting
from control cycle times, Tc and T ′c , defined as

Tc = Tr + TI + Tw

T ′c = Tr + TI,
(2)

where Tr is the time it takes to read the health statuses from all of the four
environment variables, TI is the time it takes to run the logic (the time can
be interpreted as the time taken to run the code shown in Figure 3), and Tw

is the time it takes to write information to the board (see Figure 4). Writing
information to the board is not needed in every iteration (for instance, if the
system state remains the same), therefore the control cycle time also include
T ′c .

The control cycle times Tc and T ′c are listed in Table 1. The relay delay
time can be found from the board specifications and shall be less than 20ms.

An important safety requirement in an aircraft is that a bus should never
lose power for more than a certain duration, e.g., typically 50ms. In the
hardware testbed, the time for which the bus is unpowered depends on the
control cycle times and the relay delay time, and because the control cycle
times exceed 50ms, we cannot use the typically specified time for which an
aircraft can be unpowered. Therefore, it was necessary to adopt a suitable
limit. As illustrated with two environment variables in Figure 4 the relay
board read the health status from each environment variable in a specified
order. It is therefore necessary to include a part of T ′c from the previous
control cycle in this limit. The time TI in Equation (2) is negligible compared

Tc [ms] T ′c [ms]

Mean 303.7 187.5

Max 333.3 234.1

Min 282.5 166.6

Table 1: Control cycle time, both when relay configuration changes, i.e., Tc and without
any change, i.e., T ′c . The values with and without change were calculated from
20 and 250 measurements, respectively.
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to Tr and Tw, the time taken to read the health status from one environment
variable can therefore be approximated as T ′c/4. A reasonable value of an
acceptable unpowered time for the hardware testbed can be

T ≈max(Td)+ max(Tc)+
4−n

4
max(T ′c ), (3)

where n ∈ {1,2,3,4} is the number which denotes the order of when the
environment variable that is faulty is read in the code.

4.2 Controller Tests

Two controllers were tested, one with distributed logic and one with central-
ized logic. The controller with centralized logic had a 16-state automaton
synthesized as explained in Section 2.3. The controller with distributed logic
had two four-state automata that run on each subsystem. Both of these
automata were synthesized in a similar fashion to the 16-state controller.

If the environment-related assumption is violated, the controller may end
up in a state with no outgoing transitions, referred to as the no-successor
state. The environment-related assumptions for the testbed are expressed
in Equation (1) of Section 2.3. A violation of Equation (1) results in the
controller entering a no-successor state, which happens when both generators
or both rectifier units are faulty. If a centralized controller senses that
both rectifier units are faulty, the whole system stops working because a
no-successor state has been reached. This is not the case when distributed
logic is used, because the AC system continues working even if the DC
environment assumption is violated and the DC part reaches a no-successor
state. The distributed logic implementation has two different automata that
represent the logic, one for each subsystem, with coupling between them.
However, the distributed logic is centralized in that it consists of single
control software running on a single computer and communicating with the
hardware through a single channel.

Figure 9 shows the voltage measurement for the centralized 16-state
controller. The measurement was taken on the AC bus when the generator,
which health status is read at second place (n = 2 in Equation (3)) of
the four environment variables in the code, was switched off and then on
again. The generator was switched off at t = 2.83s, at which point the bus
becomes unpowered. The second vertical line from the left indicates when
the controller reacts and power up the bus using the other generator, which
happens at t = 3.1s. The generator was switched on again at t = 3.73s; this
was accompanied by a discernible change in the sine curve. Once a generator
is switched on again after a fault, the time for which the bus is without
power is not noticeable because the controller sends simultaneous commands
to two relays.

The measured bus-unpowered times are listed in Table 2, which show
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Figure 9: Bus voltage measurement when a generator is switched off and then turned
back on. The first vertical line indicates the fault, the second vertical line is
when the controller reacts, and the third line is when the generator is turned
back on.

Bus-unpowered time [ms]

Mean 333.9

Max 414.9

Min 232.7

Table 2: Time for which bus is unpowered after a fault is injected. These values are
calculated using measurements from 10 fault injections.

a maximum value of Tmax = 414.9ms. An acceptable unpowered time when
n = 2 and max(Td) = 20ms can be calculated with Equation (3). It follows
that T ≈max(Td)+max(Tc)+ 1

2 max(T ′c ) = 470.35ms and hence, Tmax < T . We
used a digital storage oscilloscope (Rigol DS1052E 50MHz) for measurements.
The measurement data are imported into Matlab to plot sinusoidal curves
(e.g., Figure 9) and to analyze the signal to estimate the unpowered times.
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5 Limitations and Extensions

As discussed earlier, when we implemented distributed logic with the hardware
model, it was still centralized in that only one relay board was connected to
one computer. However, it is possible to use two relay boards connected to
two different computers, with each of them controlled by different automata.
The part that contributes the most to the control cycle times (Tc and T ′c ), is
the time it takes to read data from the board (Tr); if the controller is operated
with two relay boards, Tr would be split in half, which would cause Tc and T ′c
to decrease significantly. The distributed control architecture would also be
more like that of an aircraft.

We injected faults in the hardware testbed by unplugging the power cords
and changing the switches; however, a more accurate approach to generate
faults would be the use of an additional relay board. Using an additional
fault injection board, we can systematically study synchronous, correlated,
and cascaded failures and their influence on controller performance; with
the current method of fault injection, it could be difficult to switch off a
generator and a rectifier unit within the same control cycle.

On an aircraft, the controller is an embedded system designated for
a specific task. To increase its reliability and performance, the hardware
model could be adapted to run the relay boards through microcontrollers.
Embedded code for these microcontrollers can be readily generated using
Matlab.

At last, we want to emphasize the fact that it is entirely possible to
synthesize the controller with another synthesis tool and test it on the
testbed. It was convenient as an initial demonstration to choose LTL,
reactive synthesis, and TuLiP because they have been applied to electric
power systems in the past [2].
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A Code to Implement Control Software

The code below shows how the control software can be implemented on the
hardware testbed when the board from RelayPROS is used. The numbers
on the relays in Figure 10 are the same as they have to be connected when
controlling the board through Matlab with the code below. The numbers
range from 0 to 7, i.e., eight relays in total for each relay bank. There are
two relay banks on the relay board, i.e., 16 relays in total. The models built
in this report only use Relay Bank 1.

+
-

-
+
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4

DC subsystemAC subsystem
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1
1
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Figure 10: Circuit schematic of the hardware testbed, which corresponds to the single-line
diagram shown in Figure 1.
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clc
clear
global state;
global stateDC;
state = 0;
stateDC = 0;
%choose the correct COM port for the computer in use.
s=serial(’COM3’);
set(s,’BaudRate’,115200)
fopen(s)
%Set initial status
fwrite(s,254)
fwrite(s,8)
fread(s,1);
fwrite(s,254)
fwrite(s,15)
fread(s,1);
fwrite(s,254)
fwrite(s,3)
fread(s,1);
fwrite(s,254)
fwrite(s,9)
fread(s,1);
fwrite(s,254)
fwrite(s,10)
fread(s,1);
fwrite(s,254)
fwrite(s,4)
fread(s,1);
fwrite(s,254)
fwrite(s,14)
fread(s,1);
fwrite(s,254)
fwrite(s,13)
fread(s,1);
%read relay status
fwrite(s,254)
fwrite(s,16)
c2a = fread(s,1);
fwrite(s,254)
fwrite(s,23)
c1a = fread(s,1);
fwrite(s,254)
fwrite(s,19)
c3a = fread(s,1);
fwrite(s,254)
fwrite(s,17)
c4a = fread(s,1);
fwrite(s,254)
fwrite(s,18)
c5a = fread(s,1);
fwrite(s,254)
fwrite(s,20)
c6a = fread(s,1);
disp(’[c1,c2,c3,c4,c5,c6] =’)
disp([c1a,c2a,c3a,c4a,c5a,c6a])
statecount=0;
count=1;
pause(1)
disp(’start’)
disp(’--------------------------------------’)
disp(’system runs normal’)
disp(state)
%If distributed control logic is used
%uncomment the following row
%disp(stateDC)
while count<100

tic
fwrite(s,254);
fwrite(s,150);
leftg = fread(s,1);
fwrite(s,254);
fwrite(s,151);
rightg = fread(s,1);
fwrite(s,254);
fwrite(s,152);
leftru = fread(s,1);
fwrite(s,254);
fwrite(s,153);
rightru = fread(s,1);
if rightg>100 && rightg<200

rgen = 1;
else

rgen = 0;
end
if leftg>100 && leftg<200

lgen = 1;
else

lgen = 0;
end
if rightru>100 && rightru<200

rru = 1;
else

rru = 0;
end
if leftru>100 && leftru<200

lru = 1;
else

lru = 0;
end
stateprev=state;
%Reads the controller BPCU.m
%(comment if distributed logic is used)
[c1,c2,c3,c4,c5,c6] = BPCU(rgen,lgen,rru,lru);
%If distributed control logic is used
%uncomment the following rows
%[c1,c2,c3] = BPCUAC(rgen,lgen);
%[c4,c5,c6] = BPCUDC(rru,lru);
if c1 ~= c1a || c2 ~= c2a || c3 ~= c3a ||...

c4 ~= c4a || c5 ~= c5a || c6 ~= c6a
t=1;
statecount=statecount+1;

else
t=0;

end
if stateprev ~=state

disp(’--------------------------------------’)
if rgen==0

disp(’rgen unhealthy’)
end
if lgen==0

disp(’lgen unhealthy’)
end
if lru==0

disp(’lru unhealthy’)
end
if rru==0

disp(’rru unhealthy’)
end
if rru==1 && lru==1 && rgen==1 && lgen==1

disp(’system runs normal’)
end
disp(’current state’)
disp(state)
%If distributed control logic is used
%uncomment the following row
%disp(stateDC)

end
fwrite(s,254);
fwrite(s,26);
fread(s,1);
if c1 ~= c1a

if c1==1
fwrite(s,254)
fwrite(s,15)
fread(s,1);

else
fwrite(s,254)
fwrite(s,7)
fread(s,1);

end
fwrite(s,254)
fwrite(s,23)
c1a = fread(s,1);

end
if c2 ~= c2a

if c2==1
fwrite(s,254)
fwrite(s,8)
fread(s,1);

else
fwrite(s,254)
fwrite(s,0)
fread(s,1);

end
fwrite(s,254)
fwrite(s,16)
c2a = fread(s,1);

end
if c3 ~= c3a

if c3==1
fwrite(s,254)
fwrite(s,11)
fread(s,1);

else
fwrite(s,254)
fwrite(s,3)
fread(s,1);

end
fwrite(s,254)
fwrite(s,19)
c3a = fread(s,1);

end
if c4 ~= c4a

if c4==1
fwrite(s,254)
fwrite(s,14)
fread(s,1);

else
fwrite(s,254)
fwrite(s,6)
fread(s,1);

end
fwrite(s,254)
fwrite(s,22)
c4a = fread(s,1);
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end
if c5 ~= c5a

if c5==1
fwrite(s,254)
fwrite(s,13)
fread(s,1);

else
fwrite(s,254)
fwrite(s,5)
fread(s,1);

end
fwrite(s,254)
fwrite(s,21)
c5a = fread(s,1);

end
if c6 ~= c6a

if c6==1
fwrite(s,254)
fwrite(s,12)
fread(s,1);

else
fwrite(s,254)
fwrite(s,4)
fread(s,1);

end
fwrite(s,254)
fwrite(s,20)
c6a = fread(s,1);

end
fwrite(s,254);
fwrite(s,37);
fread(s,1);
if t==1

statetime(statecount)=toc;
else

time(count)=toc;
count=count+1;

end

end
disp(’--------------------------------------’)
disp(’end’)
%Close all relays
fwrite(s,254)
fwrite(s,25)
fread(s,1);
fwrite(s,254)
fwrite(s,0)
fread(s,1);
fwrite(s,254)
fwrite(s,1)
fread(s,1);
fwrite(s,254)
fwrite(s,2)
fread(s,1);
fwrite(s,254)
fwrite(s,3)
fread(s,1);
fwrite(s,254)
fwrite(s,4)
fread(s,1);
fwrite(s,254)
fwrite(s,5)
fread(s,1);
fwrite(s,254)
fwrite(s,6)
fread(s,1);
fwrite(s,254)
fwrite(s,7)
fread(s,1);
%Sound to know when the simulation stops
t1=1/10000:1/10000:2;
fadt1=(sin(2*pi*369.99*t1));
sound(fadt1,10000)
fclose(s)
delete(s)
clear s
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B Component List

The main components used in the hardware testbed are listed in Table 3.
The fuses, which are used by the testbed are of type 1 A 3AG fast acting
fuses.

Quantity Product

1 USB Relay Board 16-Channel 5 Amp DPDT 8 A/D Inputs

2 12 V Batteries

2 Power Inverter 12 VDC to 120 VAC

2 Transformers 120 VAC to 24 VAC

4 In Line Fuse Holder for 3AG Type

2 Rectifier Units 24 VAC to 0-5 VDC

2 2.4 V LED Diodes

2 24 VAC Lamp

2 Zener Diodes

2 DPDT Mechanical Switches

2 AA Batteries

1 AA Battery Holder

Table 3: List of the components used in the hardware testbed.
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